Kitagawa-Takahashi diagrams define the limiting conditions for cyclic fatigue failure in human dentin.

نویسندگان

  • J J Kruzic
  • R O Ritchie
چکیده

As cyclic fatigue is considered to be a major cause of clinical tooth fractures, achieving a comprehensive understanding of the fatigue behavior of dentin is of importance. In this note, the fatigue behavior of human dentin is examined in the context of the Kitagawa-Takahashi diagram to define the limiting conditions for fatigue failure. Specifically, this approach incorporates two limiting threshold criteria for fatigue: (i) a threshold stress for fatigue failure, specifically the smooth-bar (unnotched) fatigue endurance strength, at small crack sizes and (ii) a threshold stress-intensity range for fatigue-crack growth at larger crack sizes. The approach provides a "bridge" between the traditional fatigue life and fracture mechanics based damage-tolerant approaches to fatigue-life estimation, and as such defines a "failure envelope" of applied stresses and flaw sizes where fatigue failure is likely in dentin This approach may also be applied to fatigue failure in human cortical bone (i.e. clinical "stress fractures"), which exhibits similar fatigue behavior characteristics, and in principle may aid clinicians in making quantitative evaluations of the risk of fractures in mineralized tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transition behavior in fatigue of human dentin: structure and anisotropy.

The influence of tubule orientation on the transition from fatigue to fatigue crack growth in human dentin was examined. Compact tension (CT) and rectangular beam specimens were prepared from the coronal dentin of molars with three unique tubule orientations (i.e., 0 degrees , 45 degrees and 90 degrees). The CT specimens (N=25) were used to characterize fatigue crack initiation and steady-state...

متن کامل

On the in vitro fatigue behavior of human dentin: effect of mean stress.

Human dentin is susceptible to failure under repetitive cyclic-fatigue loading. This investigation seeks to address the paucity of data that reliably quantify this phenomenon. Specifically, the effect of alternating vs. mean stresses, characterized by the stress- or load-ratio R (ratio of minimum-to-maximum stress), was investigated for three R values (-1, 0.1, and 0.5). Dentin was observed to ...

متن کامل

On the application of the Kitagawa–Takahashi diagram to foreign-object damage and high-cycle fatigue

The role of foreign-object damage (FOD) and its effect on high-cycle fatigue (HGF) failures in a turbine engine Ti– 6Al–4V alloy is examined in the context of the use of the Kitagawa–Takahashi diagram to describe the limiting conditions for such failures. Experimentally, FOD is simulated by firing 1 and 3.2 mm diameter steel spheres onto the flat specimen surface of tensile fatigue specimens at...

متن کامل

Tubule orientation and the fatigue strength of human dentin.

In this study the influence of tubule orientation on the strength of human dentin under static and cyclic loads was examined. Rectangular beams were sectioned from the coronal dentin of virgin extracted molars (N=83) and then loaded in quasi-static 4-point flexure or 4-point flexural fatigue to failure. The flexure strength, energy to fracture and fatigue strength were evaluated for specimens w...

متن کامل

Foreign-object damage and high-cycle fatigue: role of microstructure in Ti–6Al–4V

The objective of this study was to evaluate the influence of microstructure on the susceptibility to high-cycle fatigue (HCF) failure in Ti–6Al–4V following foreign-object damage (FOD), specifically by comparing a fine-grained bi-modal microstructure with a coarse grained lamellar microstructure. FOD was simulated by high-velocity impacts of steel spheres on a flat surface. This caused a marked...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 79 3  شماره 

صفحات  -

تاریخ انتشار 2006